麻豆人妻无码性色AV专区,亚洲AV极品无码专区在线观看,18禁美女黄网站色大片在线,秋霞无码久久久精品,宅男噜噜噜66网站在线观看,真人无码作爱免费视频网站,中国亚州女人69内射少妇,丝袜美腿亚洲一区二区,少妇高潮无套内谢麻豆传,国产精品无码AV片在线观看播

<center id="ojlzu"></center>
<rt id="ojlzu"></rt>
    <rt id="ojlzu"></rt>
  1. <rt id="ojlzu"></rt>
      1. Wuxi Gotele Metal Products Co., Ltd : CN EN
        Home >>News >>News of Elecrical System

        What do you know about electrical cable?

        According to weikipedia, an electrical cable is made of two or more wires running side by side and bonded, twisted, or braided together to form a single assembly, the ends of which can be connected to two devices, enabling the transfer of electrical signals from one device to the other. Cables are used for a wide range of purposes, and each must be tailored for that purpose. Cables are used extensively in electronic devices for power and signal circuits. Long-distance communication takes place over undersea cables. Power cables are used for bulk transmission of alternating and direct current power, especially using high-voltage cable. Electrical cables are extensively used in building wiring for lighting, power and control circuits permanently installed in buildings. Since all the circuit conductors required can be installed in a cable at one time, installation labor is saved compared to certain other wiring methods.

         

         

         

        The term originally referred to a nautical line of specific length where multiple ropes, each laid clockwise, are then laid together anti-clockwise and shackled to produce a strong thick line, resistant to water absorption, that was used to anchor large ships. In mechanics, cables, otherwise known as wire ropes, are used for lifting, hauling, and towing or conveying force through tension. In electrical engineering cables are used to carry electric currents. An optical cable contains one or more optical fibers in a protective jacket that supports the fibers.

        Electrical cable is an assembly consisting of one or more conductors with their own insulations and optional screens, individual covering(s), assembly protection and protective covering(s). Electrical cables may be made more flexible by stranding the wires. In this process, smaller individual wires are twisted or braided together to produce larger wires that are more flexible than solid wires of similar size. Bunching small wires before concentric stranding adds the most flexibility. Copper wires in a cable may be bare, or they may be plated with a thin layer of another metal, most often tin but sometimes gold, silver or some other material. Tin, gold, and silver are much less prone to oxidation than copper, which may lengthen wire life, and makes soldering easier. Tinning is also used to provide lubrication between strands. Tinning was used to help removal of rubber insulation. Tight lays during stranding makes the cable extensible (CBA – as in telephone handset cords).[further explanation needed]

        Cables can be securely fastened and organized, such as by using trunking, cable trays, cable ties or cable lacing. Continuous-flex or flexible cables used in moving applications within cable carriers can be secured using strain relief devices or cable ties.

        At high frequencies, current tends to run along the surface of the conductor. This is known as the skin effect.

        Fire test in Sweden, showing rapid fire spread through burning of cable jackets. Of great importance for cables used in installations.

        500,000 circular mil (254 mm2) single conductor power cable

         

        Cables and electromagnetic fields

        Any current-carrying conductor, including a cable, radiates an electromagnetic field. Likewise, any conductor or cable will pick up energy from any existing electromagnetic field around it. These effects are often undesirable, in the first case amounting to unwanted transmission of energy which may adversely affect nearby equipment or other parts of the same piece of equipment; and in the second case, unwanted pickup of noise which may mask the desired signal being carried by the cable, or, if the cable is carrying power supply or control voltages, pollute them to such an extent as to cause equipment malfunction.

        The first solution to these problems is to keep cable lengths in buildings short, since pick up and transmission is essentially proportional to the length of the cable. The second solution is to route cables away from trouble. Beyond this, there are particular cable designs that minimize electromagnetic pickup and transmission. Three of the principal design techniques are shielding, coaxial geometry, and twisted-pair geometry.

        Shielding makes use of the electrical principle of the Faraday cage. The cable is encased for its entire length in foil or wire mesh. All wires running inside this shielding layer will be to a large extent decoupled from external electrical fields, particularly if the shield is connected to a point of constant voltage, such as earth or ground. Simple shielding of this type is not greatly effective against low-frequency magnetic fields, however - such as magnetic "hum" from a nearby power transformer. A grounded shield on cables operating at 2.5 kV or more gathers leakage current and capacitive current, protecting people from electric shock and equalizing stress on the cable insulation.

        Coaxial design helps to further reduce low-frequency magnetic transmission and pickup. In this design the foil or mesh shield has a circular cross section and the inner conductor is exactly at its center. This causes the voltages induced by a magnetic field between the shield and the core conductor to consist of two nearly equal magnitudes which cancel each other.

        A twisted pair has two wires of a cable twisted around each other. This can be demonstrated by putting one end of a pair of wires in a hand drill and turning while maintaining moderate tension on the line. Where the interfering signal has a wavelength that is long compared to the pitch of the twisted pair, alternate lengths of wires develop opposing voltages, tending to cancel the effect of the interference.

         

         

         

         

        Fire protection

        In building construction, electrical cable jacket material is a potential source of fuel for fires. To limit the spread of fire along cable jacketing, one may use cable coating materials or one may use cables with jacketing that is inherently fire retardant. The plastic covering on some metal clad cables may be stripped off at installation to reduce the fuel source for fires. Inorganic coatings and boxes around cables safeguard the adjacent areas from the fire threat associated with unprotected cable jacketing. However, this fire protection also traps heat generated from conductor losses, so the protection must be thin.

        To provide fire protection to a cable, the insulation is treated with fire retardant materials, or non-combustible mineral insulation is used.

         

        Electrical cable types

        A 250 V, 16 A electrical cable on a reel.

        Coaxial cable – used for radio frequency signals, for example in cable television distribution systems.

        Communications cable

        Direct-buried cable

        Flexible cables

        Heliax cable

        Non-metallic sheathed cable (or nonmetallic building wire, NM, NM-B)[3]

        Metallic sheathed cable (or armored cable, AC, or BX)[3]

        Multicore cable (consist of more than one wire and is covered by cable jacket)

        Paired cable – Composed of two individually insulated conductors that are usually used in DC or low-frequency AC applications

        Portable cord – Flexible cable for AC power in portable applications

        Ribbon cable – Useful when many wires are required. This type of cable can easily flex, and It is designed to handle low-level voltages.

        Shielded cable – Used for sensitive electronic circuits or to provide protection in high-voltage applications.

        Single cable (from time to time this name is used for wire)

        Submersible cable

        Twinax cable

        Twin-lead – This type of cable is a flat two-wire line. It is commonly called a 300 Ω line because the line has an impedance of 300 Ω. It is often used as a transmission line between an antenna and a receiver (e.g., TV and radio). These cables are stranded to lower skin effects.

        Twisted pair – Consists of two interwound insulated wires. It resembles a paired cable, except that the paired wires are twisted

        HomeTelProductsContact
        CN EN
        日韩激情一级毛卡视频免费| 精品亚洲成A人片在线观看| 久久精品亚洲国产av香蕉| 国产精九????网站漫画| av中文字幕卡通动漫亚洲| 污污黄黄的成年亚洲毛片| 日韩av免费观看在线| 亚洲人精品午夜射精日韩| 亚洲熟女少妇淫语高潮| 熟女丝袜美腿亚洲一区二区三区| AV资源在线| 国产精品久久久一本精品| 精品在免费线中文字幕久久| 中文字幕人妻二区综合| 四虎国产精品永久一区| 久久伊人精品一区二区三区| A在线亚洲男人的天堂| 亚洲AV极品无码专区在线观看| 免费无码AV片在线观看| 亚洲精品一区二区美女| 欧美激情一区二区三区| 国产成人无码A区在线观看导航| 精品少妇人妻AV无码专区| 亚洲欧美一区二区三区在线| 中文字幕日韩精品人妻| 午夜少妇伦理一区二区| 乱色熟女一区二区三区| 国产精品成人激情在线| 亚洲av黄片一区二区| 亚激情av一区二区三区| 亚洲av乱码专区国产精品| 青草社区视频在线亚洲| 欧美精品日韩色一区激情| 中文字幕乱码av在线| 日本欧美另类视频在线| 久久精品亚洲毛片美女极品| 自拍成人免费在线视频| 国产大片资源中文字幕乱视频 | 久久精品国产精品久久| 国产91手机在线播放| 欧美极品日韩精品一区二区三区|